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ABSTRACT

In this paper, we present the unbiased minimum
variance estimation of the correlation function, rxx(k), of a
wide—sense stationary random signal x(k). However, the

obtained theoretical minimum variance estimator, Txx(k),
for ryx(k) is a function of not only x(k) but also the
unknown ryx(k) and thus is not computable. Additionally,
Txx(k) is not computationally efficient. We, therefore,
propose  a Txx(k),

implemented by a 3-step computationally -efficient
algorithm without need of rxx(k). Finally, we show some
simulation examples using Capon's minimum variance

spectral estimator in which Txx(k) is used for the

correlation function estimate to indicate that fyx(k) leads
to very good results on spectral estimation.

I. INTRODUCTION

modified  estimator, denoted

Various signal processing algorithms are designed
based on the correlation function rxx(k) of a given set of
random data x(0), x(1), ..., x(N—1), in order to extract the
information of interest from data. For instance, rxx(k) is
needed in linear prediction coding in speech processing [1],
beamforming in  sonar  array = processing 2},
direction—finding and low—angle tracking in radar array
processing [2], linear predictive deconvolution [3] in
seismology and spectral estimation [4]. Similar cases can
also be found in the fields of imaging processing, adaptive
signal processing, radio astronomy and oceanography.
However, ryx(k) can only be estimated from data. The
estimation accuracy of the used estimate of rxy(k) is surely
very important to the performance of the associated signal
processing algorithms. A well-known biased estimate of
rxx(k) of a stationary random signal x(n) is given by

N—1-k

§ 2 x(n) x(n+k), 0<k<N—1
n=0

The(-k), —N<k<0

which was popularly used in various areas mentioned
previously. The reason for this may be that E[x(n)x(n+k)]
is intuitively replaced by the time average of x(n)-x(n+k

Although Tix(k)(N/N—|k|) is an unbiased estimate of
rxx(k), it is not a minimum variance estimate of rxx(k).

There are also cases that an estimate of ryx(k), said Tix(k),

(1)
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is prewindowed and then used in the following signal
Frocessing such as Blackman—Tukey spectral estimation
4].

In this paper, we propose an unbiased minimum

variance estimator Txx(k) = Txx(—k) (see (2) below) for
rxx(k) which linearly processes x(n)-x(n+k) for n=0, 1,
...,N=1-k, and k>0. However, the obtained theoretical

minimum variance estimator Txx(k) is a function of not
only x(k) but also the unknown ryx(k), and thus is not
computable. Additionally, it is not computationally
efficient. We, therefore, propose a modified estimator,

denoted Txx(k), implemented by a 3—step computationally
efficient algorithm without need of ryx(k). Then we show
some simulation examples using Capon's minimum

variance spectral estimator in which fyx(k) is used for the

correlation function estimate to indicate that Fxx(k) leads
to very good results on spectral estimation. Finally, we

briefly discuss the positive definiteness of I'xx(k) and
draw some conclusions.

II. UNBIASED MINIMUM VARIANCE CORRELATION
FUNCTION ESTIMATION

Assume that x(n) is a wide—sense stationary real
Gaussian random process with zero mean. The desired

unbiased minimum variance estimate, Tyx(k), of the
correlation function rxx(k) of x(n) is expressed as:

N-1-k
. hy(n) yx(n), 0<k<N—1
I'xx(k) = n=0 ) v (2)
rflxx("k) —N<k<0
where
yk(n) = x(n)- x(n+k). (3)

Note that Tix(k) is a special case of (2) with hy(n) = 1/N
for all k and n. hg(n) for 0<n<N—1—k is to be determined

such that Txx(k) is unbiased with minimum variance.
Txx(k) can also be expressed as the following vector form:

fl\!xx(k) = hk' Yk (4)
where
Yk = (Y(O)v y(l)a St Y(N_k_l))' (5)
nd
T b= 0 ), - BN, ()
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The unbiasedness requires

E[fxx(K)] = hi' E[yi] = rxx(k) (hi' 1) = rxx(k)
where 1=(1,1,
constraint

(7

--,1)', which leads to the following

h'1=1 (8)
From (2) and the assumption that x(k) is zero—mean

Gaussian, one can show that the variance of Txx(k) is given
by

var[fxx(k)] = El(Fxx(k))?] — (rxx(k))* = hi' R b (9)
where Ry is an (N—k)x(N—k) symmetric Toeplitz matrix
whose (i,j) component is given by
[Rilsy = (rax(i=)?

Y k) rxx(inj+k), 1<,j<N—k. (10

Minimizing var[Txx(k)] under the constraint given by (8)
can be done by minimizing
J=h'Rehe + A (h'1-1) (11)

where X is the Lagrange multiplier. The optimal hy can be
easily shown to be

Bo=———— R (12)
'Rt 1
Substituting (12) back into (9) yields
Var[fxx(k)] = ————— (13)
IRt 1

Some observations regarding (12) are given in the
following. First of all, when x(n) is white, Rk reduces to

2ryx(0)]21 for k=0 and [rxx(0)]?I for k>1 where I is an
identity matrix with a proper dimension. Thus,

Bk(n)=1/(N-k), or Txx(k)= [N/(N=k)] Tix(k) for k0.
Secondly, Ry is both symmetric and persymmetric since
Ry is symmtric Toeplitz. Thus, Hx(n) = Ry (N—k—1-n).
Thirdly, the dimension, (N—k)x(N—k) of Ry is large when

N is large and k i small. Therefore, computing fix using

(12) is not practical. Finally, Bk is not computable
because Ry is unknown.
Based on the previous observations associated with

Txx(k), we propose a modified estimator, denoted fxx(k)
(see  (18) below), implemented by a 3-step
computationally efficient algorithm without need of ryx(k).
From (10) we see that Ry can be expressed as

Ri=apl+A (14)
where
0 a; ag ...
A=l210 aas (15)
az & a2
ay
and agag 0

a3 = (rxxli))? + rxx(k—) - Txx(k+i). (16
When | A;|<ay for all the eigxenvalue)s(x/\; 's of the)ma,trix A,

the following approximation to Ry ! is reasonable:
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Al lo(1-4—1 ()

The proposed algorithm for obtaining Txx(k) is given as
follows:

Rk-lz'}T[I"}‘

S1: Prewhiten x(n) with an M—th order prediction error
filter H(z). Let e(n) denote the prewhitened data.

S2: Estimate Tee(k) for k=0, 1, ..., Ne—1, using (4), (12)

and (17) where rx(i) is replaced by Tke(i) (see (1))
and a;=0 for i>Nj.
$3: Compute
txx(k) = [W(k) Tee(k)] * rvo(k) ~ (18)
where w(k) is a window function, rwgk) = v(k) = v(-k)
and v(k) is the impulse response of the inverse filter
1/H(z).

Notice that, in S1, we prewhiten the data so that the
problem of estimating ryx(k) is converted into the problem
of estimating ree(k) which is much narrower than rxx(k).
The parameters M, Ne and N, must be chosen large

enough for the reasonable approximation to Ry given by
(17). We then estimate Tee(k) in S2 with ree(k) replaced by
Tle(k). Finally, we compute fxx(k) from the windowed

Tee(k). The reason for this is that the variance of Tee(k) is
larger for a larger k because the total number of
e(n%-e(n+k) used, N—k, is smaller for a larger k. The
window w(k) such as w(k) = (N—|k|t) N (a triangular
window) is used to compensate for this effect.

III. COMPUTER SIMULATIONS

The simulations were performed as follows. we
generated a pseudo white Gaussian sequence u(k) with
unity variance and let it pass through an autoregressive
moving average (ARMA) filter to provide data x(k). The

data length was N=256. We then estimated fxx(k) using
the 3—step algoirthm presented in Section II where Burg's

prediction error filter [4] with order M=10, w(k)=
(N—|k|)/N, Na=70 and N = 50 were used. Capon's
minimum variance spectral estimator is known to compute
the estimate, Pny(f), of the power spectral density (PSD)
of x(k) as follows:
A p
Pny(f) =

i Rx{(l v

(19)

y

where v=(1 exp(j2xf) - -- exp(j27f(p—1))', and Rxx is an
estimate of the pxp autocorrelation matrix

rxx(0)  rxx(—1) . rxx[~(p—1)]
Rxx=| rxx(1) 1xx(0) ... 1xx[-(p=2)] |. (20)

Fex(P1)_Tae(p-2) .- Tx(0)
We then computed Ppy(f) with rex(k) in Ryx replaced by

fxx(k) and p=50. The average of 20 estimates is shown
together with the true PSD. Also, the 20 estimates are
Rlotted in an overlaid fashion to indicate the variability of

Pny(f). Finally, we also compared our simulation results
with the corresponding results when Ry is given by




B 1
Reabi = 87

N-1 N-1-p
{ Z x(n—i) x(n—j) + 2 x(n+i) x(n+j)

n= n=0
which ispused by the modified covariance method [4] for
autoregressive (AR) spectral estimation and is, to the
authors' knowledge, currently best for minimum variance
spectral estmation.

(21)

A case of broadband spectrum and a case of
narrowband spectrum taken from [4] were simulated and
the simulation results are shown in Figures 1 and 2,
respectively. The results shown in Figures 1a and 2a were

obtained using Tix(k). The results shown in Figures 1b and

2b were obtained using Ixx(k). One can see, from Figures
la and 1b, that the results are very comparable because
they are unbiased with similar variances. However, from
Figure 2, one can see that the results shown in Figure 2a
are biased with a much larger variance than those
associated with Figures 2b, whereas the results shown in
Figure 2b are very good. We also performed the same

simulations using Ryxx given by (21). However, the results
are quite similar to those shown in Figures 1b and 2b, and
thus are not shown here. These simulation results also
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Figure 1.

indicate that our Txx(k) leads to very good results on
spectral estimation. We also performed other simualtions
for different parameters, M>10, 30<Na<70 and
30<Ne<70. The results are very similar to those shown in

Figures 1b and 2b because M=10 and N,=70 and N=50
are large enough for a good approximation to Ry (see
(17)).
IV. DISCUSSION AND CONCLUSIONS
In this paper, we presented the unbiased minimum

variance estimation of the autocorrelation function of a
wide—sense stationary randon signal x(k). The obtained

estimate Txx(k) of the autocorrelation function ryx(k) is
given by (4) where hy=Ry is given by (12). Unfortunately,

Txx(k) is not computable since the unknown rxx(k) is
needed in computing Hy and computing hy using (12) is not
practical from the computational point of view. We also

proposed a modified estimator Txx(k) given by (18) which
is implemented by a 3—step computatioanlly efficient
algorithm without need of rxx(k) described in Section II.

One can show, from (18), that when Tee(k) as well as w(k)
are positive definite Tyxx(k) is positive definite. With our

15F 4
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Overlaid realizations (left part), average of realizations (solid line) and the true

PSD (dashed line) (right part) associated with (a) The(k) and (b) fxx(k),
respectively, for the broadband case.
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experience, Tee(k) is almost surely positive definite when
the order M of the prediction error filter, N, and N, (see
S2) are large enough for a good approximation to the

associated Ry (see (17)). We then showed some
simulation results using Capon's minimum variance power
A

spectrum estimator Ppy(f) (see (19)) in which Tix(k) (see
(1)) and txx(k) were used, respectively. The corresponding

results associated with Ry given by (21) which, we
believe, are currently best results, are quite similar to

those associated with Fxx(k) and thus were not provided.

These simulation results indicate that Txx(k) is a very
good estimator for ryx(k). Potentially, with an appropriate
selection of the window w(k), M, Ny, and Ne, our 3—step

algorithm could yield a Txx(k) which leads to better results
than other estimates of rxx(k) in the following associated
signal processing such as minimum variance spectral

estimation. The performance of applying Txx(k) to other
signal processing problems is under study. As a final
remark, the corresponding results for the case of complex
random signals can be similarly obtained.
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PSD (dashed line) (right part) associated with (a)
respectively, for the narrowband case.
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